
doi: 10.5937/MatMor2102125F
Mathematica Moravica
Vol. 25, No. 2 (2021), 125–141

Blow up results for a viscoelastic Kirchhoff-type
equation with logarithmic nonlinearity

and strong damping

Jorge Ferreira, Erhan Pı̇şkı̇n, Nazlı Irkıl, Carlos Raposo

Abstract. A Kirchhoff equation type with memory term competing
with a logarithmic source is considered. By using potential well theory,
we obtained the global existence of solution for the initial data in a
stability set created from Nehari Manifold and prove blow up results
for initial data in the instability set.

1. Introduction

We are investigating the following viscolelastic Kirchhoff type problem
with logarithmic nonlinearity, for (x, t) ∈ Ω×R+,

utt −M
(
‖∇u‖2

)
∆u+

t∫
0

g (t− s)4 u (s) d s−∆ut = |u|p−2 u ln |u| ,(1)

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,(2)

u (x, t) = 0, x ∈ ∂Ω×R+,(3)

where Ω is a bounded domain in Rn, n ≥ 1 with smooth boundary ∂Ω.
M (s) = α + βsγ (γ, s ≥ 0), specially, we take a = β = 1. We impose some
conditions to be specified on the kernel function g (t) .

This kind of wave equation (1) is called of Kirchhoff type in reason of the
one-dimensional nonlinear equation (4) proposed by Kirchhoff [10] (1883),

(4)
∂2u

∂t2
−

(
τ0

m
+

k

2mL

∫ L

0

(
∂u

∂x

)2

dx

)
∂2u

∂x2
= 0,

where τ0 is the initial tension, m the mass of the string and k the Young’s
modulus of the material of the string. This model, in connection with some
problems in nonlinear elasticity, describes small vibrations of a stretched
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126 Blow up results for a viscoelastic Kirchhoff-type equation

string of the length L when only the transverse component of the tension is
considered.

In [18], was proved existence and the energy decay estimate of global
solutions for a extensible beam equation of Kirchhoff type with internal
damping |ut|p−1ut and source term |u|q−1u given by

utt + ∆2u+M(||∇u||2)(−∆u) + |ut|p−1ut = |u|q−1u in Ω× (0, T ),(5)
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,(6)

u(x, t) =
∂u

∂η
(x, t) = 0, x ∈ ∂Ω, t ≥ 0,(7)

where p ≥ 1, q > 1 are real numbers, Ω be a bounded domain in Rn with
smooth boundary ∂Ω and M(s) is a continuous function on [0,+∞).

The following equation
(8)

|ut|ρ utt−M
(
‖∆u‖2

)
∆2u+∆2utt−

t∫
0

h (t− s)42u (s) d s = |u|γ−1 u ln |u|k

has been considered by Boulaaras et al. in [4]. They established polynomial
decay rate estimates results of solutions. In presence of delay term with
γ = 1 the equation (8) has been studied by Mezouar et al. in [17]. They
proved the global existence of weak solutions and the uniform decay of the
energy is derived.

In the absence of kernel function (that is g = 0) and by taking M (s) = 1
and p = 2, the equation (1) can be recorded in the form

(9) utt −∆u−∆ut = u ln |u| .

Logarithmic nonlinearity term appears frequently in partial differential equ-
ations due to their wide application in physics and other applied sciences.
Problems like equation (9) is encountered naturally in quantum mechanics,
inflation cosmolog, supersymmetric field theories, and a lot of different areas
of physics such as, optics, geophysics and nuclear physics [5, 6, 11,13]. With
all those specific meaning in physics, the mathematical behaviour of solution
to the problem of evolution equation with such logarithmic type nonlinearity
takes lots of attention by many mathematicians. We also mention some rela-
ted mathematical work involving the logarithmic term in the literature see,
for example, [7–9,12,15] and references therein.

When M (s) = 1, g 6= 0, then these problems turn into viscoelastic wave
equation with logarithmic source term. This type problems have been hand-
led carefully by many authors in several works [2, 16,19,21,25].

In the present paper, we dedicate our study to problem (1)-(3). The struc-
ture of the work is as follows: To facilitate the description, firstly in section
2 we present the potential well. In Section 3 we present hypotheses and lem-
mas which will need throughout in our proof of existence of solution and
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blow up in finite time. In Section 4 and section 5, respectively, we establish
the global existence and blow up results.

2. Potential well

As standard, ‖ · ‖2 and ‖ · ‖p denotes the usual L2 (Ω) norm and Lp (Ω)

norm, respectively. We denote by C and Ci (i = 1, 2, ...) various positive
constants. We will use the Standart Lebesgue Space L2 (Ω) with the inner
product and the norm. The inner product can take as

〈u, v〉 =

∫
u(x)v(x) dx

and the norm is defined as

‖u‖2 = 〈u, u〉
1
2 .

It is well known that the energy of a PDE system is, in some sense, split
into kinetic and potential energy. Following the idea of Y. Ye [24] we are
able to construct a set of stability as follows. We will prove that there is a
valley or a “well” of depth d created in the potential energy. If this height d
is strictly positive, we find that, for solutions with initial data in the “good
part” of the well, the potential energy of the solution can never escape the
well. In general, it is possible for the energy from the source term to cause
the blow-up in finite time.

For u ∈ H1
0 (Ω) we define the functional

(10) J (λu) =
λ2β

4(γ + 1)
‖u‖2(γ+1) − λ

p

∫
Ω

up ln |u|dx, 0 < λ ≤ 1.

Associated with the J we have the well known Nehari Manifold given by

N
def
=

{
u ∈ H1

0 (Ω) /0 :

[
d

dλ
J (λu)

]
λ=1

= 0

}
.

From (10) we get

d

dλ
J (λu) =

λβ

2(γ + 1)
‖u‖2(γ+1) − 1

p

∫
Ω

up ln |u| dx,

then

N def
=

u ∈ H1
0 (Ω)/{0} :

λβ

2(γ + 1)
‖u‖2(γ+1) =

1

p

∫
Ω

up ln |u|dx

 .

We define as in the Mountain Pass theorem due to Ambrosetti and Rabino-
witz [3],

d = inf
{u∈H1

0 (Ω)/0}
sup
0≤λ

J (λu) .
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It is well-known that the depth of the well d is a strictly positive constant,
see [[22], Theorem 4.2], and

d = inf
u∈N
J (u).

In fact, in our problem, the solution of
d

dλ
J (λu) = 0 is

λ∗ =


1
p

∫
Ω

up ln |u| dx

β

2(γ + 1)
‖u‖2(γ+1)

 .
We have

d2

dλ2
J (λu) =

β

2(γ + 1)
‖u‖2(γ+1) > 0,

and then λ∗ is a global minimum.

Since λ∗ < 1, by straight calculation we get J (λ∗u) < 0, so we introduce
the sets

H1 = {u ∈ H1
0 (Ω);J (λ∗u) ≤ J (λu) ≤ 0}

and
H2 = {u ∈ H1

0 (Ω); 0 < J (λu)}.
The potential well is defined by H = {u ∈ H1

0 (Ω) : J (u) < d} ∪ {0} and
partition it into two sets

V =

u ∈ H :
λβ

2(γ + 1)
‖u‖2(γ+1) >

1

p

∫
Ω

up ln |u|dx

 ∪ {0},
W =

u ∈ H :
λβ

2(γ + 1)
‖u‖2(γ+1) <

1

p

∫
Ω

up ln |u|dx

 .

We will refer to V as the “good” part of the well and W as the “bad” part
of the well. Then we define by V the set of stability for the problem (1)-(3).

3. Technical lemmas

In this section, we present hypotheses and lemmas which will need thro-
ughout this paper.

Lemma 1. [1, 20] Let cq be the smallest positive constant satisfying

(11) ‖u‖q ≤ cq ‖∇u‖ , ∀u ∈ H
1
0 (Ω),

where 2 ≤ q <∞, if n = 1, 2; and 2 ≤ q ≤ 2n
n−2 , if n ≥ 3.

We state general assumptions on g :
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(A1) g ∈ C1 ([0,∞)) is a nonincreasing and nonnegative function satisf-
ying

(12) g (0) ≥ 0, α−
∞∫

0

g (s) ds = l > 0,

(A2) There exist positive constant ϑ such that

(13) g′ (t) ≤ ϑg (t) , t ≥ 0.

The total energy functional E(t) of the solution u (t) of equation (1) is
defined as follows:

E(t) =
1

2
‖ut‖2 +

1

2

α− t∫
0

g (s) d s

 ‖∇u‖2 +
1

p2
‖u‖pp(14)

+
β

2 (γ + 1)
‖∇u‖2(γ+1) +

1

2
(g ◦ ∇u) (t)− 1

p

∫
Ω

up ln |u|dx,

and we have that E(t) > 0 in the good part of the well.
Now, we introduce the potential energy functional

J(u) =
1

2

α− t∫
0

g (s) d s

 ‖∇u‖2 +
1

p2
‖u‖pp(15)

+
β

2 (γ + 1)
‖∇u‖2(γ+1) +

1

2
(g ◦ ∇u) (t)− 1

p

∫
Ω

up ln |u|dx,

and the functional

I(u) =

α− t∫
0

g (s) d s

 ‖∇u‖2 + β ‖∇u‖2(γ+1)(16)

+ (g ◦ ∇u) (t)−
∫
Ω

up ln |u| dx,(17)

for u ∈ H1
0 (Ω) , where

(18) (g ◦ ∇u) (t) =

t∫
0

g (t− s) ‖∇u (s)−∇u (t)‖2 d s.

Then, it is easy to show that for u ∈ H1
0 (Ω) ,

J(u) =
1

p
I(u) +

(p− 2) l

2p
‖∇u‖2 +

p− 2γ − 2

2p (γ + 1)
β ‖∇u‖2(γ+1)

+
(p− 2)

2p
(g ◦ ∇u) (t) +

1

p2
‖u‖pp ,(19)
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(20) E(t) =
1

2
‖ut‖2 + J(u).

Remark 1. From the definition of E (t) with (20), (A1)− (A2) and Lemma
1, we get

E(t) ≥ 1

2

α− t∫
0

g (s) d s

 ‖∇u‖2 +
1

2
(g ◦ ∇u) (t)− 1

p

∫
Ω

up ln |u|dx

(21)

≥ 1

2

(
l ‖∇u‖2 + (g ◦ ∇u) (t)

)
− 1

p
‖u‖p+1

p+1

≥ 1

p

[p
2

(
l ‖∇u‖2 + (g ◦ ∇u) (t)

)
− ‖u‖p+1

p+1

]
≥ 1

p

[p
2

(
l ‖∇u‖2 + (g ◦ ∇u) (t)

)
− C(p+1)

∗ l
p+1
2 ‖∇u‖p+1

2

]
≥ 1

p
K

[(
l ‖∇u‖2 + (g ◦ ∇u) (t)

) 1
2

]
, t ≥ 0, where

(22) K (σ) =
p

2
σ2 − C(p+1)

∗ σp+1 and C∗ =
c√
l
.

It is easy to verify that there is a maximum value of K (σ) at

σ1 =

(
p

p+ 1
C
−(p+1)
∗

) 1
p−1

and the maximum value is

(23) E1 =
p− 1

2

(
p

p+ 1

) p+1
p−1

C
− 2(p+1)

p−1
∗ .

Now, the following assumptions and lemmas have an important role in
the proving of our main results.

Lemma 2. Suppose that (A1) and (A2) hold. Then the energy functional
E (t) is decresing with respect to t and
(24)

E′ (t) = −1

2
‖∇ut‖2 +

1

2

[(
g′ ◦ ∇u

)
(t)− g (t) ‖∇u (t)‖2

]
≤ −1

2
‖∇ut‖2 ≤ 0,

where (
g′ ◦ ∇u

)
(t) =

t∫
0

g′ (t− s)
∫
Ω

|∇u (s)−∇u (t)|2 dx d t.
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Kanıt. We multiply both sides of (1) by ut and then integrating from 0 to
t, we have

E (t)− E (0) = −1

2
‖∇ut‖2 +

t∫
0

1

2

[(
g′ ◦ ∇u

)
(t)− g (t) ‖∇u (t)‖2

]
(25)

≤ −1

2
‖∇ut‖2 ,

which yields (24) by a simple calculation. �

Lemma 3. Let u be the solution of problem (1) with initial data satisfies
E (0) < E1 and l

1
2 ‖∇u0‖ < σ1, then

(26)
(
l ‖∇u‖2 + (g ◦ ∇u) (t)

) 1
2
< σ1,

for t ∈ [0, T ) .

Kanıt. By (22), we see that

K (σ) =

 > 0, 0 < σ < σ1

= 0, σ < σ1

< 0, σ > σ1,

and lim
σ→∞

K (σ) = −∞. We prove Lemma 3 by contradiction. Assume (26)
does not satisfy. Then, by the continuity of u (t) about time, there is a
t∗ ∈ (0, T ) to make (

l ‖∇u‖2 + (g ◦ ∇u) (t)
) 1

2
= σ1.

By (21), it follows that

E(t∗) ≥ K
[(
l ‖∇u‖2 + (g ◦ ∇u) (t)

) 1
2

]
(27)

= K (σ1)

= E1.

But this is imposible by E(t) ≤ E(0) < E1, for ∀t ≥ 0. Therefore, the proof
is completed. �

Remark 2. From (26) and σ1 =
(

p
p+1C

−(p+1)
∗

) 1
p−1

=
(

p
p+1

) 1
p−1

c
− (p+1)

p−1 l
2(p+1)
p−1 ,

we obtain

l ‖∇u‖2 ≤ l ‖∇u‖2 + (g ◦ ∇u) (t) < σ2
1 =

(
p

p+ 1

) 2
p−1

l
4(p+1)
p−1 c

− 2(p+1)
p−1 ,(28)
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which implies that

I(u) =

α− t∫
0

g (s) d s

 ‖∇u‖2 + ‖∇u‖2(γ+1) + (g ◦ ∇u) (t)−
∫
Ω

up ln |u| dx

(29)

≥

α− ∞∫
0

g (s) d ds

 ‖∇u‖2 + ‖∇u‖2(γ+1) + (g ◦ ∇u) (t)−
∫
Ω

up ln |u| dx

≥ l ‖∇u‖2 − ‖u‖p+1
p+1

≥ l ‖∇u‖2 − cp+1 ‖∇u‖p+1
2 ≥ 0.

Further, by (19), we get

J(u) =
1

p
I(u) +

(p− 2) l

2p
‖∇u‖2 +

p− 2γ − 2

2p (γ + 1)
β ‖∇u‖2(γ+1)(30)

+
p− 2

2p
(g ◦ ∇u) (t) +

1

p2
‖u‖pp

≥ p− 2

2p

[
l ‖∇u‖2 + (g ◦ ∇u) (t)

]
+

1

p
I(u).

By (29), (30), (20) and Lemma 2 we conclude that

(31) l ‖∇u‖2 ≤ 2p

p− 2
J(u) ≤ 2p

p− 2
E(t) ≤ 2p

p− 2
E(0) ≤ 2p

p− 2
E1.

Since log x < x for any x > 0, using Lemma 1, we get that∫
Ω

up ln |u| dx ≤ ‖u‖p+1
p+1(32)

≤ cp+1 ‖∇u‖p+1(33)

≤ cp+1

l

(
2p

l (p− 2)
E(0)

) p−1
2

l ‖∇u‖2

= µl ‖∇u‖2

≤ 2pµ

p− 2
E(t),

where µ = cp+1

l

(
2p

l(p−2)E(0)
) p−1

2
. Notice that E(0) < E1 if and only if

(34) µ =
cp+1

l

(
2p

l (p− 2)
E(0)

) p−1
2

< 1.
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4. Global existence

We start this section, present the local existence theorem. The proof of
theorem 1 can be found similar to [14,23].

Theorem 1. Let u0 ∈W, u1 ∈ H1
0 (Ω) . Assume that (A1) , E(0) < E1 and

l ‖∇u‖2 ≤ σ2
1 hold. Then problem (1) has a unique solution u (x, t) satisfies

u (t) ∈ L∞
(
0, T ;H1

0 (Ω)
)
with ut (t) ∈ L∞

(
0, T ;H1

0 (Ω)
)
.

Moreover, at least one of the following statements holds true, T = ∞ or
‖ut‖2 + ‖∆u‖2 →∞ as t→ T−.

Now we are in position to state and prove the global existence result.

Theorem 2. Let u0 ∈W , u1 ∈ H1
0 (Ω) . Suppose that (A1) , 0 < E(0) < E1

and l ‖∇u‖2 ≤ σ2
1 hold. Then problem (1)-(3) admits a global weak solution

u (t) ∈ L∞
(
0,∞;H1

0 (Ω)
)
with ut (t) ∈ L∞

(
0,∞;H1

0 (Ω)
)
.

Kanıt. Our aim is to show that the solutions exist when T = ∞. First,
multiplying (1) by −2∆u, and integrating it over Ω, we obtain

d

dt

‖∆u‖2 − 2

∫
Ω

ut∆udx

+ 2M
(
‖∇u‖2

)
‖∆u‖2

(35)

≤ 2 ‖∇ut‖2 − 2

∫
Ω

|u|p−2 u ln |u|∆udx+ 2

t∫
0

g (t− s)
∫
Ω

4u (s)4 u (t) dx d s.

We now estimate the last term in the right side of (35) as follows

2

t∫
0

g (t− s)
∫
Ω

4u (s)4u (t) dx d s ≤ 2ε ‖∆u‖2 +
‖g‖L1

2ε

t∫
0

g (t− s) ‖4u (s)‖2 d s.

(36)

where 0 < ε <
‖g‖L1

2 .
Thus, by inserting (36) in (35) and then multiplying it by η, 0 < η ≤ 1,

we have

d

d t

η ‖∆u‖2 − 2η

∫
Ω

ut∆udx

+ 2η
(
M
(
‖∇u‖2

)
− ε
)
‖∆u‖2

(37)

≤ 2η ‖∇ut‖2 − 2η

∫
Ω

|u|p−2 u ln |u|∆udx+ η
‖g‖L1

2ε

t∫
0

g (t− s) ‖4u (s)‖2 d s.
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Then adding 2E′ (t) to (37), we have
d

d t
E∗ (t) + 2η

(
M
(
‖∇u‖2

)
− ε
)
‖∆u‖2 + 2 (1− η) ‖∇ut‖2(38)

≤ −2η

∫
Ω

|u|p−2 u ln |u|∆udx+ η
‖g‖L1

2ε

t∫
0

g (t− s) ‖4u (s)‖2 d s,

where

E∗ (t) = 2E (t) + η ‖∆u‖2 − 2η

∫
Ω

ut∆udx.(39)

Applying Young’s inequality, we obtain∣∣∣∣∣∣2η
∫
Ω

ut∆udx

∣∣∣∣∣∣ ≤ 2η ‖ut‖2 +
η

2
‖∆u‖2 .(40)

By Remark 2 and (30) we see clearly that J (t) ≥ 0, then by (20) we get

‖ut‖2 ≤ 2E (t) .(41)

By using of (40) and (41), (39) becomes

E∗ (t) ≥ (1− 2η) ‖ut‖2 +
η

2
‖∆u‖2(42)

=
1

5

(
‖ut‖2 + ‖∆u‖2

)
, where η =

2

5
.

Moreover, we notice that

2

∣∣∣∣∣∣
∫
Ω

|u|p−2 ln |u|u∆udx

∣∣∣∣∣∣ ≤
∫
Ω

|u|p−2 ln |u| |∇u|2 dx

≤
∫
Ω

|u|p−1 |∇u|2 dx

≤ ‖u‖p−1
(p−1)θ1

‖∇u‖22θ2 ,

where 1
θ1

+ 1
θ2

= 1, so that, we put θ1 = 1 and θ2 =∞, if n = 1; θ1 = 1 + ε1,
if n = 2; and θ1 = n

2 , θ2 = n
n−2 , if n ≥ 3. Then, by using Lemma 1, we have

2

∣∣∣∣∣∣
∫
Ω

|u|p−2 ln |u|u∆udx

∣∣∣∣∣∣ ≤ cps ‖∇u‖p−1
2 ‖∆u‖2 .

By (31) and (42), we obtain

2

∣∣∣∣∣∣
∫
Ω

|u|p−2 ln |u|u∆udx

∣∣∣∣∣∣ ≤ c1E
∗ (t) ,(43)
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where c1 = 5cps
(

2p
l(p−2)E(0)

) p−1
2
.

Substituting (43) into (38), and then integrating it over (0, t) , we get

E∗ (t) +
4

5

(
α− ε−

‖g‖2L1

4ε

) t∫
0

‖4u (s)‖2 d s

≤ E∗ (0) +

t∫
0

c1E
∗ (s) ds,

hence by choosing ε =
‖g‖L1

2 we see that

E∗ (t) ≤ E∗ (0) +

t∫
0

c1E
∗ (s) d s.

Then, by using of Gronwall’s inequality, we arrive at

E∗ (t) ≤ E∗ (0) ec1t,

for any t ≥ 0. Therefore by (42) and Theorem 1, we obtain T =∞. �

5. Blow up

In this section, we prove the blow up result of solution for the problem
(1)-(3), taking into account that the initial data is localized in instability
set.

Theorem 3. Suppose that u0 ∈ W and u1 ∈ H1
0 (Ω) and Lemma 2 holds.

Then the solution of the equation (1) blows up as time t goes to infinity as
long as E (0) < 0 and I (u0) > 0.

Kanıt. Our aim is to show that the finite time blow up of solution to equation
(1). If it is not case, we suppose that the solution u (x, t) is global. For any
T0 > 0, defining the following auxiliary function

G (t) = ‖u‖2 +

t∫
0

‖∇u (τ)‖2 d τ + (T0 − t) ‖∇u0‖2 ,

then we see clear that for G (t) > 0 for all t ∈ [0, T0] . It is obvious that
G (t) > 0. In view of the continuity of G (t) in t, we obtain that there is a
ρ > 0 such that

G (t) ≥ ρ,
where ρ is independent of T0.

Then by t ∈ [0, T0] , we have

G′ (t) = 2 (u, ut) + ‖∇u‖2 − ‖∇u0‖2(44)
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= 2 (u, ut) +

t∫
0

(∇u (τ) ,∇uτ (τ)) d τ

and

G′′ (t) = 2 ‖ut‖2 + 2

∫
Ω

uttudx+ 2 (∇u,∇ut)(45)

= 2 ‖ut‖2 − 2

∫
Ω

M
(
‖∇u‖2

)
‖∇u‖2 dx

+ 2

t∫
0

g (t− s)
∫
Ω

∇u (s)∇u (t) d s dx+ 2

∫
Ω

up ln |u|

= 2 ‖ut‖2 −

α− t∫
0

g (s) d s

 ‖∇u‖2 − 2 ‖∇u‖2(γ+1)

+

t∫
0

g (t− s) ‖∇u (s)‖2 d s− (g ◦ ∇u) (t) + 2

∫
Ω

up ln |u|

≥ 2 ‖ut‖2 − 2I (u) .

By (44), we see that

(
G′ (t)

)2
= 4

(u, ut)
2 +

 t∫
0

(∇u (τ) ,∇uτ (τ)) d τ

2
(46)

+ 4 (u, ut)

t∫
0

(∇u (τ) ,∇uτ (τ)) d τ.

Now we shall estimate the each terms in (46) by Cauchy-Schwarz, Hölder
and Young’s inequalities as follows

(u, ut)
2 ≤ ‖u‖2 ‖ut‖2 ,(47)  t∫

0

(∇u (τ) ,∇uτ (τ)) d τ

2

≤
t∫

0

‖∇u‖2 d τ

t∫
0

‖∇uτ‖2 d τ.(48)

By combining (47) and (48) and using Young’s inequality, we have

2 (u, ut)

t∫
0

(∇u (τ) ,∇uτ (τ)) d τ(49)
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≤ 2 ‖u‖ ‖ut‖

 t∫
0

‖∇u‖2 dτ


1
2
 t∫

0

‖∇uτ‖2 d τ


1
2

≤ ‖u‖2
t∫

0

‖∇uτ‖2 d τ + ‖ut‖2
t∫

0

‖∇u‖2 d dτ.

Inserting (47)-(49) into (46) becomes

(
G′ (t)

)2 ≤ 4 ‖u‖2 ‖ut‖2 + 4

t∫
0

‖∇u‖2 d τ

t∫
0

‖∇uτ‖2 d dτ(50)

+ 4

‖u‖2 t∫
0

‖∇uτ‖2 d τ + ‖ut‖2
t∫

0

‖∇u‖2 d τ


= 4 ‖u‖2

‖ut‖2 +

t∫
0

‖∇uτ‖2 d τ


+ 4

t∫
0

‖∇u‖2 d dτ

‖ut‖2 +

t∫
0

‖∇uτ‖2 d τ


= 4

‖u‖2 +

t∫
0

‖∇u‖2 d τ

‖ut‖2 +

t∫
0

‖∇uτ‖2 d τ


≤ 4G (t)

‖ut‖2 +

t∫
0

‖∇uτ‖2 d τ

 .

Then by (45) and (50) we deduce

G′′ (t)G (t)− p+ 2

4

(
G′ (t)

)2(51)

≥ G (t)

G′′ (t)− (p+ 2)

‖ut‖2 +

t∫
0

‖∇uτ‖2 d τ


≥ G (t)

2 ‖ut‖2 − 2I(u)− (p+ 2)

‖ut‖2 +

t∫
0

‖∇uτ‖2 d τ


= G (t) ξ (t) ,
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where

(52) ξ (t) = −p ‖ut‖2 − 2I(u)− (p+ 2)

t∫
0

‖∇uτ‖2 d τ.

By Lemma 2 and (19) we obtain

E (0) ≥
t∫

0

‖∇uτ‖2 d τ + E (t)(53)

=

t∫
0

‖∇uτ‖2 d τ +
1

2
‖ut‖2 + J(u)

=

t∫
0

‖∇uτ‖2 d τ +
1

2
‖ut‖2 +

1

p
I(u) +

(p− 2) l

2p
‖∇u‖2

+
p− 2γ − 2

2p (γ + 1)
β ‖∇u‖2(γ+1) +

(p− 2)

2p
(g ◦ ∇u) (t) +

1

p2
‖u‖pp .

Inserting (53) into (52) we obtain

ξ (t) > (p− 2)

t∫
0

‖∇uτ‖2 d τ − 2pE (0) + (p− 2) l ‖∇u‖2(54)

+
p− 2γ − 2

(γ + 1)
β ‖∇u‖2(γ+1) + (p− 2) (g ◦ ∇u) (t) +

1

p2
‖u‖pp .

Under the condition E (0) < 0, we obtain

(55) (p− 2) l ‖∇u‖2 − 2pE (0) > 0.

Hence by (55) we arrive at that

ξ (t) > (p− 2)

 t∫
0

‖∇uτ‖2 d τ + (g ◦ ∇u) (t)

(56)

+
p− 2γ − 2

(γ + 1)
β ‖∇u‖2(γ+1) +

1

p2
‖u‖pp

> ϑ > 0.

Then, by using (56), we can see clearly that

G′′ (t)G (t)− p+ 2

4

(
G′ (t)

)2 ≥ G (t)ϑ.

Let y (t) = G (t)
−p+2

4 , then we obtain

y′′ (t) ≤ −p− 2

4
ϑy (t)

p+2
p−2 , t ∈ [0, T0] .
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That is
lim
t→T ∗

y (t) = 0,

where T ∗ is independent of initial choice of T0 and T ∗ < T0. Therefore we
can conclude that

lim
t→T ∗

G (t) = 0. �
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